2020. — Т 12. — №4 - перейти к содержанию номера...
Постоянный адрес этой страницы - https://esj.today/51savn420.html
Полный текст статьи в формате PDF (объем файла: 567.7 Кбайт)
Ссылка для цитирования этой статьи:
Маслеев, А. В. Новая модель сосредоточенных параметров для управления газотранспортной системой / А. В. Маслеев, В. В. Гончарова, Д. В. Ерошкин [и др.] // Вестник Евразийской науки. — 2020. — Т 12. — №4. — URL: https://esj.today/PDF/51SAVN420.pdf (дата обращения: 05.12.2024).
Новая модель сосредоточенных параметров для управления газотранспортной системой
Маслеев Александр Владимирович
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: masleev.av@students.dvfu.ru
Гончарова Виктория Владимировна
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: goncharova.vv@students.dvfu.ru
Ерошкин Дмитрий Владимирович
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: eroshkin.dv@students.dvfu.ru
Чемезов Илья Игоревич
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: chemezov.ii@students.dvfu.ru
Леченко Геннадий Евгеньевич
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: lechenko.ge@students.dvfu.ru
Волков Кирилл Романович
ФГОУ ВО «Дальневосточный федеральный университет», Владивосток, Россия
Студент 2-го курса кафедры «Нефтегазовое дело и нефтехимии»
Магистрант
E-mail: volkov.vk@students.dvfu.ru
Аннотация. Для моделирования современных газотранспортных систем применяются различные численные методы и алгоритмы решения нелинейных уравнений, выражающих математическую модель газопроводов, компрессорных станций и различного оборудования газотранспортных систем. К наиболее успешно применяемым методам можно отнести метод конечной разности и метод характеристик. С точки зрения вычислений модель состояний пространства является эффективным методом решения сложных пространственных и временных задач для моделирования состояния газотранспортных систем. Однако, у этой модели наблюдаются расхождения с реальными системами в области расчета импульса потока газа. В представленной работе предлагается новая модель с сосредоточенными параметрами для описания инерционного характера газопровода, находящегося под давлением. В качестве исходных данных для модели используются давления на входе или выходе и расход газа в системе. Исходя из основных уравнений гидравлики в частных производных для общего одномерного потока сжимаемого в изотермических условиях газа вычисляются передаточные функции как основа для дальнейшего моделирования. С помощью расширения Тейлора и других процедур преобразования рассчитывается инерционная составляющая модели состояний системы с должным упрощением. Главным достоинством предлагаемого алгоритма является повышение скорости вычислений, что особенно важно для сложных систем. Также в представленной статье используется пример расчета газотранспортной системы для иллюстрации эффективности предлагаемой в работе модели. Разрабатываемая модель в будущем может позволить производить автоматизацию системы с помощью различных средств в реальном времени. Предполагается, что использование предлагаемой модели повысит точность управления системой.
Ключевые слова: газотранспортная система; моделирование; численные методы; системы управления; анализ эффективности системы; скорость вычислений; модель сосредоточенных параметров; уравнения в частных производных
Контент доступен под лицензией Creative Commons Attribution 4.0 License.
ISSN 2588-0101 (Online)
Уважаемые читатели! Комментарии к статьям принимаются на русском и английском языках.
Комментарии проходят премодерацию, и появляются на сайте после проверки редактором.
Комментарии, не имеющие отношения к тематике статьи, не публикуются.